Declaration of vctQuaternionRotation3Base.
More...
Go to the source code of this file.
|
template<class _quaternionType , class _matrixType > |
void | vctQuaternionRotation3BaseFromRaw (vctQuaternionRotation3Base< _quaternionType > &quaternionRotation, const vctMatrixRotation3Base< _matrixType > &matrixRotation) |
|
template<class _containerType , class _elementType , vct::stride_type _stride, class _dataPtrType > |
vctFixedSizeVector
< _elementType, 3 > | operator* (const vctQuaternionRotation3Base< _containerType > &rotationQuaternion, const vctFixedSizeConstVectorBase< 3, _stride, _elementType, _dataPtrType > &vector) |
|
template<class _containerType , class _elementType , class _vectorOwnerType > |
vctFixedSizeVector
< _elementType, 3 > | operator* (const vctQuaternionRotation3Base< _containerType > &rotationQuaternion, const vctDynamicConstVectorBase< _vectorOwnerType, _elementType > &vector) |
|
template<class _elementType , vct::stride_type __strideOut, class __dataPtrTypeOut > |
void | vctQuaternionVectorProductByElements (const _elementType qX, const _elementType qY, const _elementType qZ, const _elementType qR, const _elementType vX, const _elementType vY, const _elementType vZ, vctFixedSizeVectorBase< 3, __strideOut, _elementType, __dataPtrTypeOut > &output) |
|
#define _vctQuaternionRotation3Base_h |
template<class _containerType , class _elementType , vct::stride_type _stride, class _dataPtrType >
template<class _containerType , class _elementType , class _vectorOwnerType >
template<class _quaternionType , class _matrixType >
template<class _elementType , vct::stride_type __strideOut, class __dataPtrTypeOut >
void vctQuaternionVectorProductByElements |
( |
const _elementType |
qX, |
|
|
const _elementType |
qY, |
|
|
const _elementType |
qZ, |
|
|
const _elementType |
qR, |
|
|
const _elementType |
vX, |
|
|
const _elementType |
vY, |
|
|
const _elementType |
vZ, |
|
|
vctFixedSizeVectorBase< 3, __strideOut, _elementType, __dataPtrTypeOut > & |
output |
|
) |
| |
|
inline |
This is an auxiliary function to multiply q * v * q^ – where q is a quaternion, v is a vector (a pure imaginary quaternion), and q^ is the conjugate of q. This is the basic operation in applying a quaternion rotation.